Skip to main content Site map

Air Pollution Prevention and Control (PDF eBook)


Air Pollution Prevention and Control (PDF eBook)

eBook by Kennes, Christian/Veiga, Maria C.

Air Pollution Prevention and Control (PDF eBook)

£147.95

ISBN:
9781118523346
Publication Date:
05 Mar 2013
Publisher:
Wiley
Pages:
570 pages
Format:
eBook
For delivery:
Download available
Air Pollution Prevention and Control (PDF eBook)

Description

Over the past two decades, the use of microbes to remove pollutants from contaminated air streams has become a widely accepted and efficient alternative to the classical physical and chemical treatment technologies. This book focuses on biotechnological alternatives, looking at both the optimization of bioreactors and the development of cleaner biofuels. It is the first reference work to give a broad overview of bioprocesses for the mitigation of air pollution. Essential reading for researchers and students in environmental engineering, biotechnology, and applied microbiology, and industrial and governmental researchers.

Contents

List of Contributors xix Preface xxi I FUNDAMENTALS AND MICROBIOLOGICAL ASPECTS 1 1 Introduction to Air Pollution 3 Christian Kennes and Maria C. Veiga 1.1 Introduction 3 1.2 Types and sources of air pollutants 3 1.2.1 Particulate matter 5 1.2.2 Carbon monoxide and carbon dioxide 6 1.2.3 Sulphur oxides 7 1.2.4 Nitrogen oxides 7 1.2.5 Volatile organic compounds (VOCs) 9 1.2.6 Odours 10 1.2.7 Ozone 11 1.2.8 Calculating concentrations of gaseous pollutants 11 1.3 Air pollution control technologies 11 1.3.1 Particulate matter 11 1.3.2 Volatile organic and inorganic compounds 12 1.3.2.1 Nonbiological processes 12 1.3.2.2 Bioprocesses 15 1.3.3 Environmentally friendly bioenergy 17 1.4 Conclusions 17 References 17 2 Biodegradation and Bioconversion of Volatile Pollutants 19 Christian Kennes, Haris N. Abubackar and Maria C. Veiga 2.1 Introduction 19 2.2 Biodegradation of volatile compounds 20 2.2.1 Inorganic compounds 20 2.2.1.1 Hydrogen sulphide (H2S) 20 2.2.1.2 Ammonia 20 2.2.2 Organic compounds 21 2.2.2.1 CxHy pollutants 22 2.2.2.2 CxHyOz pollutants 22 2.2.2.3 Organic sulphur compounds 22 2.2.2.4 Halogenated organic compounds 23 2.3 Mass balance calculations 24 2.4 Bioconversion of volatile compounds 25 2.4.1 Carbon monoxide and carbon dioxide 25 2.4.2 Volatile organic compounds (VOCs) 26 2.5 Conclusions 27 References 27 3 Identification and Characterization of Microbial Communities in Bioreactors 31 Luc Malhautier, L. Cabrol, S. Bayle and J.-L. Fanlo 3.1 Introduction 31 3.2 Molecular techniques to characterize the microbial communities in bioreactors 32 3.2.1 Quantification of the community members 32 3.2.1.1 Microscopic direct counts 32 3.2.1.2 Quantitative PCR 33 3.2.2 Assessment of microbial community diversity and structure 34 3.2.2.1 Biochemical methods 34 3.2.2.2 Genetic fingerprinting methods 34 3.2.2.3 Analysis of fingerprint data by multivariate statistical tools and diversity indices 38 3.2.3 Determination of the microbial community composition 39 3.2.3.1 Construction of small sub-unit (SSU) rRNA clone libraries followed by phylogenetic identification by randomly sequencing the clones 39 3.2.3.2 Fluorescent in situ hybridization (FISH) 39 3.2.4 Techniques linking microbial identity to ecological function 40 3.2.4.1 Stable isotope probing (SIP) 40 3.2.4.2 Microautoradiography combined with FISH (FISH-MAR) 41 3.2.5 Microarray techniques 41 3.2.6 Synthesis 42 3.3 The link of microbial community structure with ecological function in engineered ecosystems 42 3.3.1 Introduction 42 3.3.2 Temporal and spatial dynamics of the microbial community structure under stationary conditions in bioreactors 43 3.3.2.1 Temporal stability and dynamics of the total bacterial community structure in the steady state 43 3.3.2.2 Microbial and functional stratification along the biofilter height 45 3.3.2.3 The microbial community structure ecosystem function relationship 45 3.3.3 Impact of environmental disturbances on the microbial community structure within bioreactors 45 3.3.4 Conclusions 47 References 47 II BIOREACTORS FOR AIR POLLUTION CONTROL 57 4 Biofilters 59 Eldon R. Rene, Maria C. Veiga and Christian Kennes 4.1 Introduction 59 4.2 Historical perspective of biofilters 59 4.3 Process fundamentals 60 4.4 Operation parameters of biofilters 62 4.4.1 Empty-bed residence time (EBRT) 62 4.4.2 Volumetric loading rate (VLR) 63 4.4.3 Mass loading rate (MLR) 63 4.4.4 Elimination capacity (EC) 63 4.4.5 Removal efficiency (RE) 63 4.4.6 CO2 production rate (PCO2) 63 4.5 Design considerations 64 4.5.1 Reactor sizing 64 4.5.2 Irrigation system 66 4.5.3 Leachate collection and disposal 66 4.6 Start-up of biofilters 68 4.7 Parameters affecting biofilter performance 70 4.7.1 Inlet concentrations and pollutant load 70 4.7.2 Composition of waste gas and interaction patterns 71 4.7.3 Biomass support medium 72 4.7.4 Temperature 75 4.7.5 pH 78 4.7.6 Oxygen availability 79 4.7.7 Nutrient availability 80 4.7.8 Moisture content and relative humidity 81 4.7.9 Polluted gas flow direction 83 4.7.10 Carbon dioxide generation rates 83 4.7.11 Pressure drop 85 4.8 Role of microorganisms and fungal growth in biofilters 87 4.9 Dynamic loading pattern and starvation conditions in biofilters 89 4.10 On-line monitoring and control (intelligent) systems for biofilters 93 4.10.1 On-line flame ionization detector (FID) and photo-ionization detector (PID) analysers 93 4.10.2 On-line proton transfer reaction mass spectrometry (PTR-MS) 94 4.10.3 Intelligent moisture control systems 94 4.10.4 Differential neural network (DNN) sensor 95 4.11 Mathematical expressions for biofilters 95 4.12 Artificial neural network-based models 97 4.12.1 Back error propagation (BEP) algorithm 97 4.12.2 Important considerations during neural network modelling 99 4.12.2.1 Data selection, division and normalization 99 4.12.2.2 Network parameters 100 4.12.2.3 Sensitivity analysis of input parameters 101 4.12.2.4 Estimating errors in prediction 102 4.12.3 Neural network model development for biofilters and specific examples 103 4.13 Fuzzy logic-based models 105 4.14 Adaptive neuro-fuzzy interference system-based models for biofilters 108 4.15 Conclusions 111 References 111 5 Biotrickling Filters 121 Christian Kennes and Maria C. Veiga 5.1 Introduction 121 5.2 Main characteristics of BTFs 122 5.2.1 General aspects 122 5.2.2 Packing material 123 5.2.3 Biomass and biofilm 126 5.2.4 Trickling phase 126 5.2.5 Gas EBRT 128 5.2.6 Liquid and gas velocities 129 5.3 Pressure drop and clogging 130 5.3.1 Excess biomass accumulation 130 5.3.1.1 Limitation of biomass growth 131 5.3.1.2 Physical and chemical methods 132 5.3.1.3 Biological methods predation 132 5.3.1.4 Cleaning the packing material outside the reactor 133 5.3.2 Accumulation of solid chemicals 133 5.4 Full-scale applications and scaling up 134 5.5 Conclusions 135 References 135 6 Bioscrubbers 139 Pierre Le Cloirec and Philippe Humeau 6.1 Introduction 139 6.2 General approach of bioscrubbers 140 6.3 Operating conditions 141 6.3.1 Absorption column 142 6.3.2 Biodegradation step activated sludge reactor 143 6.4 Removing families of pollutants 143 6.4.1 Volatile organic compound (VOC) removal 144 6.4.2 Odor control 146 6.4.3 Sulfur compounds degradation 146 6.4.3.1 Sulfur compounds present in air 146 6.4.3.2 Biogas desulfurization 147 6.4.3.3 Ammonia absorption and bio-oxidation 147 6.5 Treatment of by-products generated by bioscrubbers 148 6.6 Conclusions and trends 148 References 149 7 Membrane Bioreactors 155 Raquel Lebrero, Ra' ul Mu noz, Amit Kumar and Herman Van Langenhove 7.1 Introduction 155 7.2 Membrane basics 156 7.2.1 Types of membranes 156 7.2.1.1 Porous membranes 157 7.2.1.2 Dense membranes 157 7.2.1.3 Composite membranes 158 7.2.2 Membrane materials 159 7.2.3 Membrane characterization parameters 159 7.2.3.1 Membrane thickness 159 7.2.3.2 Membrane performance: selectivity and permeance 159 7.2.4 Mass transport through the membrane 160 7.2.4.1 Transport in porous membranes 162 7.2.4.2 Transport in homogeneous membranes 162 7.3 Reactor configurations 163 7.3.1 Flat-sheet membranes 164 7.3.1.1 Plate and frame modules 164 7.3.1.2 Spiral-wound modules 164 7.3.2 Tubular configuration membranes 165 7.3.2.1 Tubular modules 165 7.3.2.2 Capillary membrane modules 166 7.3.2.3 Hollow-fiber membrane modules 166 7.3.3 Membrane-based bioreactors 166 7.4 Microbiology 166 7.5 Performance of membrane bioreactors 168 7.5.1 Membrane-based bioreactors 168 7.5.2 Bioreactor operation: influence of the operating parameters 169 7.6 Membrane bioreactor modeling 170 7.7 Applications of membrane bioreactors in biological waste-gas treatment 172 7.7.1 Comparison with other technologies 172 7.8 New applications: CO2 NOx sequestration 173 7.8.1 NOx removal 173 7.8.2 CO2 sequestration 176 7.9 Future needs 177 References 178 8 Two-Phase Partitioning Bioreactors 185 Hala Fam and Andrew J. Daugulis 8.1 Introduction 185 8.2 Features of the sequestering phase selection criteria 186 8.3 Liquid two-phase partitioning bioreactors (TPPBs) 187 8.3.1 Performance 187 8.3.2 Mass transfer 189 8.3.2.1 Mass transfer pathways and mechanisms 190 8.3.2.2 Substrate uptake mechanisms 191 8.3.2.3 Mass transfer of poorly soluble substrates and oxygen 192 8.3.2.4 Physical parameters affecting Kla 193 8.3.3 Modeling and design elements 194 8.3.4 Limitations and research opportunities 196 8.4 Solids as the partitioning phase 197 8.4.1 Rationale 197 8.4.2 Performance 197 8.4.3 Mass transfer 198 8.4.4 Modeling and design elements 199 8.4.5 Limitations and research opportunities 200 References 200 9 Rotating Biological Contactors 207 R. Ravi, K. Sarayu, S. Sandhya and T. Swaminathan 9.1 Introduction 207 9.1.1 Limitations of conventional gas-phase bioreactors 208 9.2 The rotating biological contactor 209 9.2.1 Modified RBCs for waste-gas treatment 210 9.2.1.1 Generation of humidified VOC stream 210 9.2.1.2 Biofilm development and start-up 211 9.2.1.3 VOC removal studies 212 9.3 Studies on removal of dichloromethane in modified RBCs 213 9.3.1 Comparison of different bioreactors (biofilters, biotrickling filters, and modified RBCs) 215 9.3.2 Studies on removal of benzene and xylene in modified RBCs 216 9.3.3 Microbiological studies of biofilms 217 9.3.3.1 Phylogenic analysis 219 References 219 10 Innovative Bioreactors and Two-Stage Systems 221 Eldon R. Rene, Maria C. Veiga and Christian Kennes 10.1 Introduction 221 10.2 Innovative bioreactor configurations 222 10.2.1 Planted biofilter 222 10.2.2 Rotatory-switching biofilter 223 10.2.3 Tubular biofilter 224 10.2.4 Fluidized-bed bioreactor 225 10.2.5 Airlift and bubble column bioreactors 227 10.2.6 Monolith bioreactor 229 10.2.7 Foam emulsion bioreactor 231 10.2.8 Fibrous bed bioreactor 233 10.2.9 Horizontal-flow biofilm reactor 234 10.3 Two-stage systems for waste-gas treatment 235 10.3.1 Adsorption pre-treatment plus bioreactor 235 10.3.2 Bioreactor plus adsorption polishing 237 10.3.3 UV photocatalytic reactor plus bioreactor 237 10.3.4 Bioreactor plus bioreactor 240 10.4 Conclusions 242 References 243 III BIOPROCESSES FOR SPECIFIC APPLICATIONS 247 11 Bioprocesses for the Removal of Volatile Sulfur Compounds from Gas Streams 249 Albert Janssen, Pim L.F. van den Bosch, Robert Cornelis van Leerdam, and Marco de Graaff 11.1 Introduction 249 11.2 Toxicity of VOSCs to animals and humans 250 11.3 Biological formation of VOSCs 251 11.4 VOSC-producing and VOSC-emitting industries 252 11.4.1 VOSCs produced from biological processes 252 11.4.2 Chemical processes and industrial applications 252 11.4.3 Oil and gas 253 11.5 Microbial degradation of VOSCs 253 11.5.1 Aerobic degradation 253 11.5.2 Anaerobic degradation 254 11.5.3 Degradation via sulfate reduction 255 11.5.4 Anaerobic degradation of higher thiols 255 11.5.5 Inhibition of microorganisms 256 11.6 Treatment technologies for gas streams containing volatile sulfur compounds 256 11.6.1 Biofilters 256 11.6.2 Bioscrubbers 258 11.7 Operating experience from biological gas treatment systems 261 11.7.1 Shell Paques process for H2S removal 266 11.8 Future developments 266 References 266 12 Bioprocesses for the Removal of Nitrogen Oxides 275 Yaomin Jin, Lin Guo, Osvaldo D. Frutos, Maria C. Veiga and Christian Kennes 12.1 Introduction 275 12.2 NOx emission at wastewater treatment plants (WWTPs) 276 12.2.1 Nitrification 276 12.2.2 Denitrification 276 12.2.3 Parameters that affect the formation of nitrogen oxides 277 12.2.3.1 DO concentration 277 12.2.3.2 High nitrite concentration 278 12.2.3.3 Cu2+ concentration 278 12.2.3.4 Salinity 278 12.2.3.5 pH effects 278 12.2.3.6 Solids retention time 278 12.2.3.7 Sudden changes in operating parameters 278 12.2.3.8 Low COD/N ratios 279 12.3 Recent developments in bioprocesses for the removal of nitrogen oxides 279 12.3.1 NOx removal 279 12.3.1.1 Rotating drum bioreactor (RDB) 279 12.3.1.2 BioDeNOx 280 12.3.1.3 Hollow-fiber membrane bioreactor (HFMB) 282 12.3.1.4 Photobioreactor 283 12.3.1.5 Integrated system 284 12.3.2 N2O removal 285 12.3.2.1 Bioelectrochemical system 285 12.3.2.2 Biotrickling filter 285 12.3.2.3 Biofilter 286 12.4 Challenges in NOx treatment technologies 287 12.5 Conclusions 288 References 288 13 Biogas Upgrading 293 M. Estefania Lopez, Eldon R. Rene, Maria C. Veiga and Christian Kennes 13.1 Introduction 293 13.2 Biotechnologies for biogas desulphurization 294 13.2.1 Environmental aspects 294 13.2.2 The natural sulphur cycle and sulphur-oxidizing bacteria 294 13.2.3 Bioreactor configurations for hydrogen sulphide removal at laboratory scale 295 13.2.3.1 Hydrogen sulphide biodegradation under aerobic or oxygen-limited conditions 295 13.2.3.2 Hydrogen sulphide removal under anoxic conditions 302 13.2.4 Case studies of biogas desulphurization in full-scale systems 302 13.2.4.1 THIOPAQ biogas desulphurization process 302 13.2.4.2 BioSulfurex biogas desulphurization process 304 13.2.4.3 BIO-Sulfex biogas desulphurization process 305 13.3 Removal of mercaptans 306 13.4 Removal of ammonia and nitrogen compounds 307 13.5 Removal of carbon dioxide 308 13.6 Removal of siloxanes 309 13.7 Comparison between biological and non-biological methods 311 13.8 Conclusions 311 References 315 IV ENVIRONMENTALLY FRIENDLY BIOENERGY 319 14 Biogas 321 Marta Ben, Christian Kennes and Maria C. Veiga 14.1 Introduction 321 14.2 Anaerobic digestion 321 14.2.1 A brief history 321 14.2.2 Overview of the anaerobic digestion process 323 14.2.2.1 Biological process 323 14.2.2.2 Environmental factors affecting anaerobic digestion 323 14.2.2.3 Important parameters in anaerobic digesters 327 14.3 Substrates 328 14.3.1 Agricultural and farming wastes 328 14.3.1.1 Manure 328 14.3.1.2 Agricultural wastes 329 14.3.2 Industrial wastes 329 14.3.2.1 Food processing waste 330 14.3.2.2 Pulp and paper industry 332 14.3.3 Urban wastes 333 14.3.3.1 Food waste 333 14.3.4 Sewage sludge 333 14.4 Biogas 334 14.4.1 Biogas composition 334 14.4.2 Substrate influence on biogas composition 335 14.5 Bioreactors 335 14.5.1 Batch reactors 337 14.5.2 Continuously stirred tank reactor (CSTR) 337 14.5.3 Continuously stirred tank reactor with solids recycle (CSTR/SR) 337 14.5.4 Plug-flow reactor 337 14.5.5 Upflow anaerobic sludge blanket (UASB) 337 14.5.6 Attached film digester 338 14.5.7 Two-phase digester 338 14.6 Environmental impact of biogas 338 14.7 Conclusions 339 References 339 15 Biohydrogen 345 Bikram K. Nayak, Soumya Pandit and Debabrata Das 15.1 Introduction 345 15.1.1 Current status of hydrogen production and present use of hydrogen 346 15.1.2 Biohydrogen from biomass: present status 346 15.2 Environmental impacts of biohydrogen production 346 15.2.1 Air pollution due to conventional hydrocarbon-based fuel combustion 346 15.2.2 Biohydrogen, a zero-carbon fuel as a potential alternative 348 15.3 Properties and production of hydrogen 348 15.3.1 Properties of zero-carbon fuel 348 15.3.2 Biohydrogen production processes 350 15.3.2.1 Biophotolysis of water using algae and cyanobacteria 350 15.3.2.2 Photo-fermentation of organic compounds by photosynthetic bacteria 353 15.3.2.3 Factors involved in the production of biohydrogen using light 354 15.3.2.4 Dark fermentation 356 15.3.2.5 Microbial electrolysis cell (MEC) 359 15.3.2.6 Hybrid systems using dark, photo-fermentations and/or MECs 363 15.4 Potential applications of hydrogen as a zero-carbon fuel 363 15.4.1 Transport sector 363 15.4.1.1 Current status of technology 364 15.4.1.2 Advantages and disadvantages of hydrogen as a transport fuel 365 15.4.2 Fuel cells 366 15.4.2.1 Classifications of fuel cells 366 15.4.2.2 Characteristics of fuel cells 368 15.4.2.3 Current status of technology 369 15.4.2.4 Advantages and disadvantages of hydrogen-based fuel cells 370 15.5 Policies and economics of hydrogen production 371 15.5.1 Economics of biohydrogen production 372 15.6 Issues and barriers 373 15.7 Future prospects 374 15.8 Conclusion 375 References 375 16 Catalytic Biodiesel Production 383 Zhenzhong Wen, Xinhai Yu, Shan-Tung Tu and Jinyue Yan 16.1 Introduction 383 16.2 Trends in biodiesel production 384 16.2.1 Reactors 384 16.2.2 Catalysts 389 16.2.2.1 Solid base catalysts 389 16.2.2.2 Solid acid catalysts 391 16.2.2.3 Enzyme catalysts 393 16.3 Challenges for biodiesel production at industrial scale 393 16.3.1 Economic analysis 393 16.3.2 Ecological considerations 393 16.4 Recommendations 394 16.5 Conclusions 395 References 395 17 Microalgal Biodiesel 399 Hugo Pereira, Helena M. Amaro, Nadpi G. Katkam, Luisa Barreira, A. Catarina Guedes, Joao Varela and F. Xavier Malcata 17.1 Introduction 399 17.2 Wild versus modified microalgae 402 17.3 Lipid extraction and purification 404 17.3.1 Mechanical methods 405 17.3.2 Chemical methods 406 17.4 Lipid transesterification 407 17.4.1 Acid-catalyzed transesterification 408 17.4.2 Base-catalyzed transesterification 408 17.4.3 Heterogeneous acid/base-catalyzed transesterification 410 17.4.4 Lipase-catalyzed transesterification 410 17.4.5 Ionic liquid-catalyzed reactions 411 17.5 Economic considerations 412 17.5.1 Competition between microalgal biodiesel and biofuels 412 17.5.2 Main challenges to biodiesel production from microalgae 413 17.5.3 Economics of biodiesel production 414 17.6 Environmental considerations 415 17.6.1 Uptake of carbon dioxide 416 17.6.2 Upgrade of wastewaters 416 17.6.3 Management of microalgal biomass 417 17.7 Final considerations 418 17.7.1 Current state 418 17.7.2 Future perspectives 418 References 420 18 Bioethanol 431 Johan W. van Groenestijn, Haris N. Abubackar, Maria C. Veiga and Christian Kennes 18.1 Introduction 431 18.2 Fermentation of lignocellulosic saccharides to ethanol 432 18.2.1 Raw materials 432 18.2.2 Pretreatment 434 18.2.2.1 Dilute acid 434 18.2.2.2 Liquid hot water 435 18.2.2.3 Concentrated acid 436 18.2.2.4 Steam explosion 436 18.2.2.5 Ammonia fibre expansion (AFEX) 436 18.2.2.6 Wet oxidation 437 18.2.2.7 Ozonolysis 437 18.2.2.8 Alkali 437 18.2.2.9 The Organosolv process 437 18.2.2.10 Lignolytic fungi 438 18.2.2.11 Other 439 18.2.3 Production of inhibitors 439 18.2.4 Hydrolysis 439 18.2.5 Fermentation 440 18.3 Syngas conversion to ethanol biological route 441 18.3.1 Sources of carbon monoxide 441 18.3.1.1 Biomass gasification for syngas production 441 18.3.1.2 Industrial waste gases 443 18.3.2 The Wood Ljungdahl pathway involved in the bioconversion of carbon monoxide 445 18.3.3 Parameters affecting the bioconversion of carbon monoxide to ethanol 446 18.3.3.1 Fermentation medium pH and temperature 446 18.3.3.2 Mass transfer limitations 447 18.3.3.3 Fermentation media composition 448 18.3.3.4 Effect of gas composition 449 18.3.3.5 Media redox potential 449 18.4 Demonstration projects 450 18.5 Comparison of conventional fuels and bioethanol (corn, cellulosic, syngas) on air pollution 451 18.6 Key problems and future research needs 455 18.7 Conclusions 456 References 456 V CASE STUDIES 465 19 Biotrickling Filtration of Waste Gases from the Viscose Industry 467 Andreas Willers, Christian Dressler and Christian Kennes 19.1 The waste-gas situation in the viscose industry 467 19.1.1 The viscose process 467 19.1.2 Overview of emission points 468 19.1.3 Technical solutions to treat the emissions 469 19.1.3.1 CS2 condensation 469 19.1.3.2 Wet catalytic oxidation 469 19.1.3.3 Regenerative adsorption 470 19.1.3.4 Thermal oxidation 470 19.1.3.5 Scrubbers 470 19.1.4 Potential to use biotrickling filters in the viscose industry 470 19.2 Biological CS2 and H2S oxidation 471 19.3 Case study of biological waste-gas treatment in the casing industry 472 19.3.1 Products from viscose 472 19.3.2 Process flowsheet of fibre-reinforced cellulose casing (FRCC) 473 19.3.2.1 Production of viscose 473 19.3.2.2 Production of fibre-reinforced cellulose casing 473 19.3.3 Alternatives for biotrickling filter configurations 473 19.3.4 Characteristics of the CaseTech plant 475 19.3.5 Description of the BioGat installation 475 19.3.6 Performance of the BioGat process 475 19.3.6.1 Start-up problems 475 19.3.6.2 Reasons for increasing pressure drop 475 19.3.6.3 Tower packing material 479 19.3.6.4 Influence of sulphuric acid on biological degradation 480 19.3.6.5 Removal efficiency 481 19.4 Conclusions 484 References 484 20 Biotrickling Filters for Removal of Volatile Organic Compounds from Air in the Coating Sector 485 Carlos Lafita, F. Javier Alvarez-Hornos, Carmen Gabaldon, Vicente Martinez-Soria and Josep-Manuel Penya-Roja 20.1 Introduction 485 20.2 Case study 1: VOC removal in a furniture facility 486 20.2.1 Characterization of the waste-gas sources 486 20.2.2 Design and operation of the system 487 20.2.3 Performance data 488 20.2.4 Economic aspects 490 20.3 Case study 2: VOC removal in a plastic coating facility 491 20.3.1 Characterization of the waste-gas sources 492 20.3.2 Design and operation of the system 492 20.3.3 Performance data 493 20.3.4 Economic aspects 495 References 496 21 Industrial Bioscrubbers for the Food and Waste Industries 497 Pierre Le Cloirec and Philippe Humeau 21.1 Introduction 497 21.2 Food industry emissions 498 21.2.1 Identification and quantification of waste-gas emissions 498 21.2.2 Choice of the technology 499 21.2.3 Design and operating conditions 500 21.2.3.1 Gas liquid transfer 500 21.2.3.2 Biological regeneration of the washing solution 500 21.2.4 Performance of the system 501 21.3 Bioscrubbing treatment of gaseous emissions from waste composting 502 21.3.1 Waste-gas emissions: nature, concentrations, and flow 503 21.3.2 Choice of the gas treatment process 504 21.3.3 Design and operating conditions 505 21.3.4 Gas collection system 506 21.3.5 Gas treatment system 508 21.3.6 Performance of the overall system 509 21.4 Conclusions and perspectives 510 References 511 22 Desulfurization of biogas in biotrickling filters 513 David Gabriel, Marc A. Deshusses and Xavier Gamisans 22.1 Introduction 513 22.2 Microbiology and stoichiometry of sulfide oxidation 514 22.2.1 Microbiology of sulfide oxidation 514 22.2.2 Stoichiometry of sulfide biological oxidation 515 22.3 Case study background and description of biotrickling filter 517 22.3.1 Site description 517 22.3.2 Biotrickling filter design 517 22.4 Operational aspects of the full-scale biotrickling filter 519 22.4.1 Start-up and biotrickling filter performance 519 22.4.2 Facing operational and design challenges 520 22.5 Economic aspects of desulfurizing biotrickling filters 522 References 522 23 Full-Scale Biogas Upgrading 525 J. Langerak, R. Lems and E.H.M. Dirkse 23.1 Introduction 525 23.2 Case 1: Zalaegerszeg, PWS system with car fuelling station 526 23.2.1 Biogas composition and biomethane requirements at Zalaegerszeg 526 23.2.2 Plant configuration at Zalaegerszeg 526 23.2.2.1 Pre-treatment at Zalaegerszeg 528 23.2.2.2 Upgrading technique at Zalaegerszeg 528 23.2.2.3 Post-treatment at Zalaegerszeg 529 23.3 Case 2: Zwolle, PWS system with gas grid injection 529 23.3.1 Biogas composition and biomethane requirements at Zwolle 531 23.3.2 Plant configuration at Zwolle 531 23.3.2.1 Pre-treatment at Zwolle 532 23.3.2.2 Upgrading technique at Zwolle 532 23.3.2.3 Post-treatment at Zwolle 533 23.4 Case 3: Wijster, PWS system with gas grid injection 534 23.4.1 Biogas composition and biomethane requirements at Wijster 534 23.4.2 Plant configuration at Wijster 534 23.4.2.1 Pre-treatment at Wijster 535 23.4.2.2 Upgrading technique at Wijster 536 23.4.2.3 Post-treatment at Wijster 536 23.5 Case 4: Poundbury, MS system with gas grid injection 536 23.5.1 Biogas composition and biomethane requirements at Poundbury 537 23.5.2 Plant configuration at Poundbury 537 23.5.2.1 Pre-treatment at Poundbury 538 23.5.2.2 Upgrading technique at Poundbury 538 23.5.2.3 Post-treatment at Poundbury 538 23.6 Configuration overview and evaluation 539 23.7 Capital and operational expenses 540 23.7.1 Zalaegerszeg 540 23.7.2 Zwolle 541 23.7.3 Wijster 541 23.7.4 Poundbury 541 23.7.5 Overview table of capital and operating expenses 541 23.8 Conclusions 542 References 543 Index 545

Accessing your eBook through Kortext

Once purchased, you can view your eBook through the Kortext app, available to download for Windows, Android and iOS devices. Once you have downloaded the app, your eBook will be available on your Kortext digital bookshelf and can even be downloaded to view offline anytime, anywhere, helping you learn without limits.

In addition, you'll have access to Kortext's smart study tools including highlighting, notetaking, copy and paste, and easy reference export.

To download the Kortext app, head to your device's app store or visit https://app.kortext.com to sign up and read through your browser.

This is a Kortext title - click here to find out more This is a Kortext title - click here to find out more

NB: eBook is only available for a single-user licence (i.e. not for multiple / networked users).

Back

University of Sunderland logo